@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: WP Smart Contracts
Website: wpsmartcontracts.com
Platform: ETH, BSC, and others
Language: Solidity

Date: April 22nd, 2022

https://wpsmartcontracts.com

Table of contents

IO U CHION o e 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 13
AUt FINAINGS oo e 14
@70 o T3 1017 T o 19
(@ 0] 1Y/ =1 1 T To [o] 0T) 20
DISCIAIMEIS ... e 22
Appendix
o Code FIoW Diagramououoiiii s 23
o Shther RESUIS LOGuiiiiii e 26
e Solidity staticanalysis ... 31
® SOININt LiNtEr oo 37

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the WP Smart Contracts team to perform the Security
audit of the Suika (ERC721), Matcha (ERC721), Almond (Staking) and Ube (staking)
smart contracts code. The audit has been performed using manual analysis as well as
using automated software tools. This report presents all the findings regarding the audit
performed on April 22nd, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

The WP Smart Contracts provides the smart contract solutions to the wordpress users.
They develop various WP plugins which lets WP websites use the smart contract
deployment quickly. We audited their Suika (ERC721), Matcha (ERC721), Almond

(Staking) and Ube (staking) smart contracts.

Audit scope

Name Code Review and Security Analysis Report for
WP Smart Contracts Protocol Smart Contracts

Platform Multiple blockchain platforms / Solidity

File 1 Suika - ERC721 NFT

File 2 Ube - Staking

File 3 Matcha - ERC721 NFT Marketplace

File 4 Almond - Staking

Audit Date April 22nd, 2022

Revision Date May 9th, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://bscscan.com/address/0x4a52a6cba544165a141366d27ae582281df265c7#code
https://bscscan.com/address/0xec2cb211cdd8347c3d709e2ef67289e93d4565a0#codePlease
https://etherscan.io/address/0x7b68b84e52c6161b321c777836309bcaf686eb91#code
https://bscscan.com/address/0x590441be0777b43b441c1ab6ae78e530df741778#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Ube - Staking YES, This is valid.
e Owner can set:
o APY: annual percentage yield, or annual
percentage interest, calculated per second
o Maturity: users can claim rewards only if
they remain staked for at least this number
of days
o Minimum amount to create a stake
o ERC-20/BEP-20 token to stake
e If the owner does not provide allowance of the
token or removes it afterwards, then it will not pay

any interest to users.

Suika - ERC721 NFT YES, This is valid.
e This contract has native & advanced features like:
o Ownership
o Transfer
o Approval
o Mint
o Sell
o Auctions, buy and sell using a standard
ERC-20 or BEP-20 token
o Royalty commissions for NFT creators
e Contract owner can change following:
o Commission Rate
o Royalties Commission Rate
o Payment Token
o Grant/ Revoke roles

e Unlimited tokens can be minted.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Almond - Staking YES, This is valid.
e Owner can set:

o The first ERC-20/BEP-20, which is used to
stake

o Asecondary ERC-20/BEP-20 token to
accrue interest

o APY: annual interest rate for the first token
(optional), calculated per second

o APY 2: the APY for the secondary token.

o Maturity: users can claim rewards only if
they remain staked for at least this number
of days

o Minimum amount to create a stake

e |If the owner does not provide allowance of the
token or removes it afterwards, then it will not pay

any interest to users.

Matcha - ERC721 NFT Marketplace YES, This is valid.
e This contract has native & advanced features like:
o Ownership
o Transfer
o Approval
o Mint
o Sell
o Auction
o Auctions, buy and sell using a native coins
(ETH, BNB, Matic, etc)
e Contract owner can change following:
o Commission Rate
o Change owner wallet
o Disable/Enable public minting

e Unlimited tokens can be minted.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. Also, these contracts do contain owner control, which does not make them
fully decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 2 critical, 0 high, 0 medium and 4 low and some very low level issues.

These are fixed / acknowledged in the revised contract code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues Passed
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 4 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the WP Smart Contracts Protocol are part of its logical algorithm. A library
is a different type of smart contract that contains reusable code. Once deployed on the
blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the WP Smart Contracts Protocol.

The WP Smart Contracts team has not provided unit test scripts, which would have helped

to determine the integrity of the code in an automated way.

Some code parts are not well commented on smart contracts. We suggest using

Ethereum’s NatSpec style for the commenting.

Documentation

We were given a WP Smart Contracts Protocol smart contract code in the form of a

BSCScan / Etherscan web link. The links of that code are mentioned above in the table.

As mentioned above, code parts are not well commented. But the logic is straightforward.
So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies

As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

AS-IS overview

Stakes.sol

Functions
SI. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [isOwner modifier Passed No Issue
3 | changeOwner write access by is Owner No Issue
4 | getOwner read Passed No Issue
5 [nonReentrant modifier Passed No Issue
6 | start external Passed No Issue
7 |end external Passed No Issue
8 [set write access by is Owner No Issue
9 [get gains read Passed No Issue
10 [ledger length read Passed No Issue

ERC721Suika.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | nonReentrant modifier Passed No Issue
3 | autoMint write access only Minter No Issue
4 [mint write access only Minter No Issue
5 | safeMint write access only Minter No Issue
6 [isMinter read Passed No Issue
7 | safeMint write access only Minter No Issue
8 burn internal Passed No Issue
9 beforeTokenTransfer internal Passed No Issue
10 | tokenURI write Passed No Issue
11 | supportsinterface write Passed No Issue
12 | addMinter write access only Role No Issue
13 | canIMint write Passed No Issue
14 | onlyMinter modifier Passed No Issue
15 | canSell read Passed No Issue
16 | sell write Passed No Issue
17 | getPrice read Passed No Issue
18 | canBuy read Passed No Issue
19 | buy write No fraction value in Acknowledged

commission rates

20 | canAuction read Passed No Issue
21 | createAuction write Passed No Issue
22 | canBid read Passed No Issue
23 | mint internal Passed No Issue
24 | bid write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

25 | canWithdraw read Passed No Issue
26 | withdraw write Passed No Issue
27 | canFinalize read Passed No Issue
28 | auctionFinalize write No fraction value in Acknowledged
commission rates

29 | highestBidder read Passed No Issue
30 [highestBid read Passed No Issue
31 [callOptionalReturn write Passed No Issue
32 | updateAdmin write Passed No Issue

StakesAlmond.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | isOwner modifier Passed No Issue
3 | changeOwner write access by isOwner No Issue
4 | getOwner read Passed No Issue
5 | nonReentrant modifier Passed No Issue
6 | start external Passed No Issue
7 |end write Passed No Issue
8 |set write access by isOwner No Issue
9 | get gains read Passed No Issue
10 | get gains2 read Passed No Issue
11 | ledger length read Passed No Issue

ERC721Matcha.sol

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 | exists read Passed No Issue
3 | tokensOfOwner read Passed No Issue
4 | setTokenURI write Anyone can set this Removed in

revised code
5 [autoMint write access only Minter No Issue
6 | transfer write Passed No Issue
7 | nonReentrant modifie Passed No Issue
r

8 | canSell read Passed No Issue
9 [sell write Passed No Issue
10 | getPrice read Passed No Issue
11 | canBuy read Passed No Issue
12 | buy write Passed No Issue
13 | canAuction read Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

14 | createAuction write Passed No Issue
15 | canBid read Passed No Issue
16 | bid write Bidding can be frozen Fixed in the
revised contract
17 | canWithdraw read Passed No Issue
18 | withdraw write Passed No Issue
19 | canFinalize read Passed No Issue
20 | auctionFinalize write Passed No Issue
21 | highestBidder read Passed No Issue
22 | highestBid read Passed No Issue
23 | callOptionalReturn write Passed No Issue
24 | updateAdmin write Passed No Issue

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

Two critical vulnerabilities were found and fixed. WP Smart Contracts team desires to keep
the bug details confidential, and thus are not revealed here. But we confirmed that those

bugs were fixed in the revised contracts code.

No high severity vulnerabilities were found.

Medium

No medium severity vulnerabilities were found.

Low

(1) No fractional commission amount possible - Suika and Matcha smart contracts

S calculate amounts

wint256 amountdadmin = sellBidPrice[tokenId].mul{commissionRate).div{18a);
pint256 amountdcreator = sellBidPrice[tokenId].mul(rovaltiesCommissionRate).div(18a};
wint256 amountdowner = sellBidPrice[tokenId].sub{amountdadmin}.sub({amountdcreator);

The commission for owner and creators can only be in whole amount and not in fraction.

For example, it can only be 1,2,3,etc. It can not be 1.5% or other fractional value.

Resolution: If this is required logic, then this point can be safely ignored. On another
hand, the commission value can be used after multiplying with 100 or any decimal amount.

So, the owner can have the option to set the percentage in fraction if desired.

Status: Acknowledged

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(2) Users may not gain the interest - Ube Smart Contract

SF check that the owner can pay interest before trying to pay

if (asset.allowance({getOwner(), address{this)}) »= _interest &% asset.balanceldf(getOwner())
gsset.transferFrom{getOwner(), msg.sender, _interest);

¥} else {
_interest = @;

13
¥

In case, the owner does not provide enough allowance, or he does not keep enough token
balance into the owner wallet, then users will not receive any interest reward. This is a

human factor, so it reduces the decentralization.

Resolution: The owner needs to acknowledge that he will provide enough allowance as
well as keep enough balance so that users can receive their interest benefits. On another
hand, to make this more trustless, enough tokens can be deposited in the contract for the

purpose of interest payment.
Status: Acknowledged

(3) SafeMath is used - All 4 smart contracts

using SafeMath for wint256;

Solidity version above 0.8.0 has in-built integer overflow/underflow protection. So, it is

recommended to avoid using safemath.

Resolution: We suggest avoiding safemath when the solidity version is over 0.8.0. This

saves some gas as well.
Status: Fixed

(4) Older solidity version used - Matcha smart contract

Compiler Varsion v(.5.7+commit.6dadb019

It is advisable to use the latest solidity version, as many security bugs are fixed in the

latest version.

Status: Fixed

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Very Low / Informational / Best practices:

(1) Input validations can be helpful - Suika and Matcha smart contracts

S updaote contract fields
function updateAdmin{address payable _admin, uint256 _commissionRate, uint256 _royaltiesCommissionRate,
require{msg.sender==contract_owner, "Only contract owner can do this");
admin = _admin;
commissionRate = _commissionRate;
rovaltiesCommissionRate = _royeltiesCommissionRate;
anyoneCanMint = _anyoneCanMint;
payment_token = _payment_token;

The owner can set commission percentages. If the wrong amount has been set by

mistake, then it creates discrepancy in the formula.

Resolution: We suggest adding a condition which specifies the expected percentage
variable. This will make sure that the input params will be expected ones. On another
hand, this can be acknowledged by the owner that he will make sure the correct amount

before setting those values.

Status: Fixed

(2) Function suggestion - Ube smart contract

It is helpful to make a view function which outputs if a particular stake is matured or not.
This will be helpful while unstaking, to make sure the premature staking is not withdrawn.

This is a “nice to have” feature. And it will not create any issues if that is not present.

Status: Acknowledged

(3) Consider using ‘external’ visibility instead of ‘public’ - All 4 smart contracts

Although this is not a big problem, it is recommended to use the visibility ‘external’ over

‘public’. It saves some gas as well.

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

Status: Fixed

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e changeOwner - Stakes contract owner can change the owner.

e set: Stakes contract owner can set lower amount, maturity value, rate, penalization
values.

e updateAdmin in ERC721Suika: The owner can change the commission
percentages, payment token, etc.

e autoMint, mint, safeMint in ERC721Suika and ERC721Matcha: The minter can mint
tokens as needed.

e grantRole in ERC721Suika: Any new role can be granted.

e revokeRole in ERC721Suika: The owner can revoke a particular role.

e renounceRole in ERC721Suika: The role can be given up completely.

e set: StakesAlmond owner can set values like: ratio1, ratio2, lower amount, maturity

rate, interest rate, penalization, etc

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code in the form of files. And we have used all possible tests
based on given objects as files. We had observed some issues in the smart contracts. And
those issues are fixed / acknowledged in the revised contract code. So, the smart

contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

; for uint256

%

@ Stakes

Cwner
ReentrancyGuard

anvsafeMath for wint256

@ ERC20 asset

O uints interest_rate

O uirt256 maturity

O uints penalization

O uirt256 lower _amourt
< address==null ledger

@ _ constructor__()
o start()

@ end()

o setf)

@ Qget_gains()

@ Qledger_lengthi)

@ SafeMath

Code Flow Diagram - WP Smart Contracts Protocol

Stakes Diagram

Context

@ ERC20
IERC20

[ER C20Metadata

O address==uint256 _balances

O address=>mapping address=>uirt256 _alowances

O uint256 _totalSupply
O string _name
O string _symbol

@ _ constructor__{)
@ Qnamel)

@ Qeymbol()

© Qelecimals()

© QtotalSupply()

@ Qhalance0f()

D transfer()

2 Qallowance()

@ approve()

@ transferFrom()

@ increaselllowancel)
@ decreaselllowance()
< _transfer()

< _mint()

< _burn()

< _approve()

< _heforeTokenTransfer()
< _afterTokenTransfer()

© .(.:)WHEI'

@ ReentrancyGuard

< Qadd()
© Qusub()
< gmul()
< Qiv()
< Qumod()

O address owner

@ _ constructor__{)
@ changelwner()

O uint256 NOT_ENTERED
O uint256 _ENTERED
O uint256 _status

@ QgetOwner()

@ _ constructor__{)

\\
| |@ terc20metadata .
| @ Context
| IERC20
| @ S name() < O_megSender()
| @ G symbol() @ Q_msgData()
@ Qdecimals()

| 4

™

| »

@ :éRc2o

@ QtotalSupply()
@ QhbalanceOf()
@ transfer()
© Qallowance()
@ approve()
@ transferFrom()

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

for adaress

ol

ERC721Suika Diagram

@ ercr21suika

ERCT21Mochi
Reentrancy Guard

anSare Math for uint256
Adress for sgdress

< pddress smin
© sdress cortract_awner
© EIF20 payment_token

1 \

L
(@) ErcT21machi

ERCT21
ERGT21Enumeratie
ERCT21URISIarsge
AscessControlEnumerable
ERGT21Burnabie

© bytes3? MINTER_ROLE
O Counters Count
© bool anyoneCarfint

M Counters for Counters Counter

_sokenkiCounter

v
for wint256

@ o

(@) iercT21Receive

® onERCT21Receiverd()

© U5 totalSuc!
O w256 MAX_UNT258
© Bddress=suni2ss beances

© iransfer()
® iransfeiFromi)
® GpaEnceoi()
© agprove()
® Salowancei)

ackrese=surtss shawsd

(@) sameiom

(@) ReentrancyGuary

< QdryAdad

O uri2ss NOT_EMTERED
O w256 _PHTERED
=] Actus

| ® _constructor_1)
| = awesim
= wir()

e
© pefareTokenTransfer0)
= QakenlRi

= Qsupsarsriertacer)
© adataneer()

/| ® acantaniy

__constructor__[)

/ (@) ercrziEnumenable

ERGT21
IERCT21Enumerabie

(€) ERc721URISIorags

(€) AccessControlEnumerabls

IccessContralEnumerabis

B “sddTokenToAITokensErumerstion])
\ = removeTokenFromCwnerEnumsrationt)

B _removeTokanfromaAllT skensEnumaration(|

ERCT2T

mSirings for ulaf256

O uint256==sting _tokenUls

@ couers

(@ ercy

& Qeurrert() Conbext O byles32: _raletiembers
© increment() Ercr21 -
: el & burn) xgetRaieMember()

< @® ercin

Cantext
ERG185

ERCTZT
IERCTZ1Metadats

WAddress for address
M\Sirings for Siar58

B string_name.

O address=suimt356 _balances.
O wintZ56==address _fokenioprovals
o i ,

rtor Approvals '

& _constructor__()

.ﬂgl

@ setApprovalForAll)

@ QuisAppravedForAllg)

© transterFromi)

= safeTransferom(y

= _sateTranstert

R _cxistsl)

© A SmApprovedOr Ownert)
atebliot)

~ RCT Recavad()
< heforaTakenTranerer()

' for wint256

(&) Address

@) rerc721Metadata

© QusCortract)

i
© funcbonCallihY slued)
© QfunctionStaticCal()
© funcbonDelegateCal()
© QuecrifyCalFcautl)

\ IERCT1

& Susymibal)
ApokenURi)

(@) izrcr2t b

(@) 1zrcr21Enumeranis

1ERC721 1 /

| @ SuskenByindex()

' & ActalSusiv() \
tokenGiOwn:

erByindex)

Qv
@ Strings

eslE SYMBOLE

o b

a
< QuoHexString() /

rERC165

Abslancen()
owmeror)
safeTransterFromt)
@ tansferFromi)

® spproveq)

© Ggetappraved)

= setApprovalFarAll)
@ QisApprovedForAl)

[

v

©) Accesscantal

Contaxt
taccesaControl
ERC165

O bytes32=>RoleDsta _raks

© Qsupportsimterfacel)
® SuhasRole()

© Q_checkRtolel)

© QgstRaleAdming)

© gramFole()

® revakeRoie()

© bytes¥) DEFALLT ADMIN ROLE

MscessContral

(@) raccesscontroiEnumerabie

® @getRoleliember()
© GgetRolslembarcount()

/ @) Ercies

Context

IERC 155

® Qsupportsimer face()

Coa)
© O _msgDatai)

Qsupporismer facel)

@ revakeRoie()
© renaunceRoicl)

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

!

StakesAlmond Diagram

@ StakesAlmond

Owner
ReentrancyGuard

mSareMath for wint256

© EIP20 asset

0 EIP20 asset2

O uints interest_rate

O uintd interest_rate2

O Uirt 256 maturity

O uint8 penalization

O Uint256 lower_amourt
o uint256 ratio

2 uint256 ratio2

O agddress==null ledger

@ EIP20

EiP2Qinterface

O uint256 MAX_UINT256

2 address=>uint256 balances

O address=>mapping address==uint256 allowed
O string name

C uintd decimals

2 string symbol

@ _ constructor__ ()
@ transfer()

@ _ constructor__ ()
@ startf)

@ end()

o setf)

@ Qget_gains()

@ Qget_gains2()

@ Qledger_length()

@ transferFrom()
@ S balance(f()
D@ approve()

@ Qallowance()

/ Ii"or wint256

s

v

(@) satemath

&:' ..I

@ ;WHEF

= ©EIP20Interface

@ ReentrancyGuard
O Uint256 totalSupply

< Qadd()
< Qusubl)
< gmuly
< Qeiv()

< Qmod()

O address owner

O wint256 _NOT_ENTERED
- @ Qbalance0f()

@ _ constructor__()
@ changeQwner()
@ QagetOwner()

O uint256 EMTERED @ transfer()
O uint256 _status
UInt2ob @ transferFrom()

@ _ constructor__() @ approvel)

© Qallowance()

This is a private and confidential document. No part of this document should

be disclosed to thir

d party without prior written permission of EtherAuthority.
Email: audit@EtherAuthority.io

ERC721Matcha Diagram

S
@ ERC721Full Ve

ERC721

ERC721Metadats
ERCT21Mmntable

ERCT21Enumerable

ERCT21MetadataMintable

 WINt256 autoT akenkl

A & setTokenURI)
P & autoMint(}
A ® transfer(y
'
g 7 T
s / \
/ 7 \
e /

i
(€ ERCT21MstadataMintable

ERCT21
| ERCT21Metadata
| MinterRoke:

© mintvinTokenURI)

| ™
/ \ pN
/ | \
[\
(@ ErcT21EnUmerable £ \
ERGCAES \
ERCT2 (©) ErcT2iMstadata \
IERCT21Enumerabie \
ERC165 \
ErCT2 \
O socress=onull _ownedTokens IERC721Metadata \
O LiNZ56=5urt756 _ownedTokensindex \
O Lint256 _allTokens
O Lint256=2uint256 _allTokensindex O string _name. \
O bytes4 INTERFACE_ID_ERC721_ENUMERABLE O string _symisol \
.—‘ O unt2568=>slring _tokenURls

© _transferFrom)
© _mirtt()
© O_tokensOfowner()

(€)ercr21Mintable

ERCT21
MinterRale

nyonsCanhin
< _setmimabeoption()

(©) ercr21Matcna

ERCT21Fuil
ReentrancyGuard

@NSafeMath for w256
EnAddress for Jddress

address admin

0000G0G
€

°
°
e
e
e
e

auctionFinalize()
dder

fg

ghestBi
highesBid()
calloptionaiReturn}
updste Adming)

O bytesd INTERFACE D ERCT21_METADATA ! | |
© _constructor_()
Qname()

Asymbally
QoikenURID
_setTokenURID

(©) minerrole

O Roles Role _minters

nRoles for Roles Role

© _constructor_()

B _addTokenToOwnerEnumeration()
= “addTokenToAlTckensEnUmEration()
= _remaveTokenFromOwnerEnumer stion()

/
! |

(€) IErc721ENUMETabIs I
IERCT21

© QataiSupplyl) |
@ QokenOfOwnerByindex() |
© QokenByindex()

@© ercTn1

ERC165
IERCT21

O bytesd ERCT21_RECEIVED
O uint256->address _tokenOwner
O uint256.

@IERCHI

IERCT21

@ @name()
® Qsymbol()
@ StokenURI()

O adar

O address—>mapping address=>bool _operator Approvals
© bylesd INTERFACE_ID_ERCT21
__constructor__}
& QuatanceOf(}
© QownerOf()
© approve()
® QgetA

setAapprovalFor Al
QisApprovedForaig)
wansferFrom()

© safeTransferFromi)

& Q_exists()
< a ovedOrOwner()
0 _mird()

transferfr

4 ']
_checkONERCT21 Received()
clearApproval()

/ ' "

y \for Counters. Counter |

~ for address

v

(i) IERCT21Receiver

® onERC721Received()

A
1

(€) ReentrancyGuard

- _constructor__()

guardC ounter

. ,_L, ' \I .
Son L v S
paN (©) Ercies ® rercrn \vi i N
'
IERC165 [ERCTeS ® Counters '
& Qbalanceoi() '
® QownerGr() anSafeMath for wint256 1
O bytes4 INTERFACE_ID_ERC165 ® safeTransferFrom{) W 1 for wint256
= Qe '
O bytesd=>bool _t : 0 “ inc ' < QtoPayabie()
& _construetor__() = '““";g"do < decrement() |
5 Q"“‘"""._t =l setApprovaFaoral() '
e = E ARG © QisApprovedForAl() ‘ i

@An\n\-ess

© QsContract()

@ ercies

5

® Qsupportsinterface)

for wint256

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

arence |tt|s
INFD Detectors:
Reentrancy in
External calls:

- asset.transfe

INFD Detectors

Reentrancy in
External calls:

asset.transfer{mse
asset.transfe

E/t»||cl -clls,
asset.transfe
asset.transfe
ent emitted
StakeEnd(msg.se

Reentrancy in

External calls:

asset.trarsf.

INFO:Detectors:
Stakes.end{uint

Refere http
INFD Detectors

INFD Detectors
Stakes.start(uin
Stakes.set{uint25
Stakes.se tlLllt“

INFO:Detectors:

changeOwn

balanceof
transfer(
allowance(
approve

transferFrom
- ER

r_le

INFO:S Lther Sta
INFO:Slither: I

rom{msg.

Stakes.end(uint2

after

Stakes.start{uin

Stakes.start{uint256)

Slither Results Log

lacks a zero-check on

) lacks a zero-check

(Stakes.sol

senaer

clared

is a private and confidential document. No part of th
rty without prior written pern

1[1i].amount, |
_interest) (Sta
er][i].amount)

[msg.sende
(5takes.so

0, _inter
ress(this),_

) uses timestamp for comparisons

interest && ass

-Documentatio

n constant:
1

o0 recent to

I.st'k_s.

is not in

is

external:
(Stakes.sol#18

cumentation
tor§), 51

sed to third p

est,i)

penalization,®

be trusted.

is not in
is not
is not in m
sol#815) 1is
mixedCase
not in mixe

#public-fun

ess-validation

(Stakes.sol#811)

ulnerabilities-3

_interest

consider deploying with ©.6.

mixedCase
in mi
ixed o
not in mixedCas

dCase

ction-that-cc

ult(s)_found

: document should
on of EtherAuthority.

Email: audit@EtherAuthority.io

(Stakes .sol#8062)

INFO:Detectors:
ERC721Mochi.constructor(address,string,string,bool).name (ERC721Suika.sol#1959) shadows:
- ERC721.name() (ERC7215uika.sol#582-584) Efunction)
- IERC721Metadata.name{) (ERC7215uika.sol#185) (function)
ERC721Mochi.constructor(address,string,string, booll.vabol (ERC7215uika.sol#1959) shadows
- ERC721.symbol() IERC;;1°u1ka s501#589-591) (function)
- IERC721Metadata.symbol() (ERC7215uika.sol#190) (function)
ERC7215uika.constructor(EIP20,address,address,uint256,uint256,string,string,bool).name (ERC7215uika.sol#2 shadows
?1.name() (ERC7215Suika.sol#582-584) (function)
- IERC721Metadata.name() (ERC721Suika.sol#185) (function)
ERC7215uika.constructor(EIP20,address,address,uint256,uint256,string,string,bool).symbol (ERC721Suika.sol#2470) shadows:
- ERC .symbol{) (ERC721Suika.sol#589-591) {function)
- IERC721Metadata.symbol{) (ERC7215uika.sol#198) (function)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
INFO:Detectors:
ERC7215uika.updateAdmin({address,uint256,uint256,bool ,EIP20) 'ERC»;lculka sol#2798-28085) should emit an event for:
- commissionRate = _commissionRate IERC;;1°u1ka sol#2801
- royaltiesCommissionRate = royaltiesCommissionRate IERC;;1°u1ka sol#230
Reference: https://github.com/crytic/slither/wiki/Detector- DDCUWQHTGTIDH*WISSIHQ events-arithmetic
INFO:Detectors:
ERC7215uika.constructor{EIP28,address,address,uint256,uint256,string,string,bool)._admin {ERC7215uika.sol#2469) lacks a zero-ch
eck on
- admin = _admin (ERC7215uika.sol#2473)
ERCa41°u1ka constructor(EIP20,address,address,uint256,uint256,string,string,bool). owner (ERC7215uika.sol#2469) lacks a zero-ch

- contract_owner = _owner (ERC7215uika.sol#2474)
ERC7215uika.updateAdmin(address,uint ,uint256,bool ,EIP20)._admin {ERC7215uika.sol#279
- admin = _admin (ERC721Suika.sol#28

eived(address,address,uint256,bytes) (ERC721Suika.sol#873-894) potentially used before declaration: reason.length == 8 (ERC721

Suika.sol#283)
variable 'ERC721._checkOnERC721Received{address,address,uint256,bytes).reason (ERC721Suika.sol#882)' in ERC721._checkOnERC721Re
ceived(address,address,uint256,bytes) (ERC721Suika.sol#373-894) potentially used before declaration: revert{uint256,uint256)(32
+ reason wloadlu1ntLEE;llnasonnn (ERC7215uika.sol#887)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#pre-declaration-usage-of-local-variables
INFO:Detectors:
Reentrancy in ERC7215uika.auctionFinalize(uint256) (ERC721Suika.sol#2712-2759)

External calls:

- reguire(bool,string){payment_token.transfer{auctions[tokenId].beneficiary,amountd4owner),Transfer failed.) (ERC7215uik
a.sol#2727)

- require(bool,string)(payment token.transfer(creators[tokenId],amount4creator),Transfer failed.) (ERC721Suika.sol#2731

require(bool,string)({payment_token.transfer({admin,amountdadmin),Transfer failed.) (ERC721Suika.sol#2736)
alloptionalReturn{this,abi.encodewithSelector(this.transferFrom.selector,owner,_ highestBidder,tokenId)) (ERC7215uika
- {success,returndata) = address{token).call{data) (ERC721Suika.sol#2722)
State variables written after the call(s):
- SDljFDI[tDkQHIj] = auctions[tokenId].highestBid (ERC72 u1ka sol#2750)
Reentrancy in ERC721S5uika.buy({uint256) (ERC721Suika.sol#2527-2568):
External calls:
- calloptienalReturn(this,abi.encodeWithSelector(this.transferFrom.selector,owner,msg.sender,tokenId)) (ERC7215uika.sol

- (success,returndata) = address(token).call{data) (ERC721Suika.sol#2788)
- reguire(bool,string){payment_token.transferFrom{msg.sender, wallets[tokenId],amountdowner),Transfer failed.) (ERC721S
uika.sol#2546)
- |Aqu1|AIbool string)(payment_token.transferFrom(msg.sender,creators[tokenId],amountdcreator)
15uika.sol#2
= |equireibool,strin-}ipaywent_token.transTerFrowtwsg.sender,adwin,awountladwin},'ransfer failed.) (ERC721Suika.sol#2

Transfer failed.) (ERC72

5)
State variables written after the call(s):
- soldFor[tokenId] = sellBidPrice[tokenId] ({ERC7215uika.sol#2
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
INFO:Detectors:
Reentrancy in ERC721Suika.auctionFinalize(uint256) (ERC721Suika.sol#2712-2759):
External calls:
require(bool,string)(payment_token.transfer(auctions[tokenId].beneficiary,amountdowner),Transfer i .) (ERC7215uik

vent emitted after the call(s):
Commiss ion(tokenId,owner,sellBidPrice[tokenId], commiss ionRate, amount4admin) (ERC721Suika.sol#25
Royaltyttokenld,owner,sellsidPrice[tokenld],rovalties(ownissionﬁate,anountJCFeator} {ERC721Suika
Sale(tokenId,owner,msg.sender,sellBidPrice[toke
Reference: https:/fglthub.cow/cryt1c/511ther/w1k1/Detect0r—DDcuwentat1Dn#reent| HCy—-UlHeFabIlltleS—%
INFO:Detectors:
ERC721Suika.canBid{uint256) (ERC721Suika.sol#2591-26082) uses timestamp for comparisons
erous comparisons:

- | msg.sen isContract() && ions[tokenId].open && block. tlwnstawp <= auctlons[toknnlj] auctionEnd && msg.sender
= ownerQ okenId) ath df] aijQSS'thiS) (ERC7215uika.sol#2592-2596)
ERC7215uika.bid{uint2 int2 (59) uses timestamp Tor CDWPaIlSDhS

Dangerous comparisoens:

- require(bool,string){block.timestamp == auctions[tokenId].auctionEnd,Auction already ended.) (ERC7215uika.sol#2
38)

ERC7215uika.canWithdraw(uint256) (ERC721Suika.sol#2665-26808) uses timestamp for comparisons

Dangerous comparisons :

- auctions[tokenId].open && ((block.timestamp >= auctions[tokenId].auctionEnd && auctions[tokenId].highestBi
ctions[tokenId].highestBid < auctions[tokenId].rese) || getApproved(tokenId) != address(this)) (ERC7215uika.sol#2666
ERC7215uika.canFinalize(uint256) (ERC721Suika.sol#2697-2789) uses timestamp fer comparisons

Dangerous comparisoens:

- auctions[tokenId].open && block.timestamp auctions[tokenId].auctionEnd && (auctions[tokenId].highestBid == auction
s[tokenId].reserve || auctions[tokenId].highestBid == 0) (ERC7215uika.sol#2698-2703)

Reference: https://github. cowa|ut1cfsllth=|f\1k1fD=t=ctDr Documentat ion#block-timestamp
INFO:Detectors:
Address . isContract(address) (ERC721Suika 2 2 assembly

- INLINE ASM {ERC721Suika.sol#22 27)

Address.verifycallResult(bool,bytes, stli) fERCT:lcuika.sol#333—4DE} uses assembly

- INLINE ASM (ERC 9u1ka SDl
ERC721._checkOnERC721Rece j'ajj\QSS,ajjIQSS uint256,bytes) (ERC721Suika.sol#873-894) uses assembly

- INLINE ASM (ERC7215uika.sol#B886-888)

EnumerableSet.values(EnumerableSet.AddressSet) (ERC7215uika.sol#1755-1764) uses assembly

- INLINE ASM (ERC7215uika.sol#1759-1
EnumerableSet.values(EnumerableSet. Lint° (721Suika.sol#1828-1837) uses assembly

- INLINE A { 7215uika.sol#

Reference: _fglthub com/crytic ither, i/Detector-Documentation#assembly-usage

ate and confidential document. No part of this document should
sed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in Stakes.start{uint256): Could potentially
lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by this static analysis.
more

Pos: 777:4:

Block timestamp:

Use of "block.timestamp": "block timestamp" can be influenced by miners to a certain degree. That
means that a miner can "choose" the block.timestamp, to a certain degree, to change the outcome of
a transaction in the mined block.

more

Pos: 790:11:

Gas costs:

Gas requirement of function Stakes.set is infinite: If the gas requirement of a function is higher than
the block gas limit, it cannot be executed. Please avoid loops in your functions or actions that modify
large areas of storage (this includes clearing or copying arrays in storage)

Pos: 815:4:

Gas costs:

Gas requirement of function Stakes.get_gains is infinite: If the gas requirement of a function is higher
than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions that
modify large areas of storage (this includes clearing or copying arrays in storage)

Pos: 824:4:

Miscellaneous

Constant/View/Pure functions:

SafeMath.sub(uint256,uint256) : Is constant but potentially should not be. Note: Modifiers are
currently not considered by this static analysis.
Pos: 44:4:

This is a private and confidential document. No part of this document should
osed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Constant/View/Pure functions:

ERC20._afterTokenTransfer(address,address,uint256) : Potentially should be constant/view/pure but
Is not. Note: Modifiers are currently not considered by this static analysis.
more

Pos: 722:4:

Similar variable names:

Stakes.(contract ERC20,address,uint8,uint256,uint8,uint256) : Variables have very similar names
"_owner" and "_lower". Note: Modifiers are currently not considered by this static analysis.
Pos: 774:23:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your
code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.
Pos: 787:8:

Guard conditions:

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your
code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external component.
more

Pos: 816:8:

Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in

Address . functionCallWithValue(address,bytes,uint256,string): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static analysis.

more

Pos: 315:4:

Gas costs:

Gas requirement of function ERC721Suika.withdraw is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions

that modify large areas of storage (this includes clearing or copying arrays in storage)
Pos: 2683:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

Ube - Stakes.sol

missing
missing
missing
missing

ERC721Suika.sol

ERC721Suika. : : : : : missing
ERC721Suika. : : : : : missing
ERC721Suika. : : : : : missing
ERC721Suika. : : : : : missing
ERC721Suika. : : : : : missing
ERC721Suika. : : : : : missing
ERC721Suika. : : : : : missing
ERC721Suika. : : : : : missing
ERC721Suika. : : : : : missing
ERC721Suika. : : : : : missing

StakesAlmond.sol

StakesAlmond.so0l:60:1: Error: Compiler version 70.8.0 does not
satisfy the r semver requirement

StakesAlmond.so0l:237:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
StakesAlmond.s0l:293:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
StakesAlmond.s0l:389:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
StakesAlmond.sol:411:9: Error: Variable name must be in mixedCase
StakesAlmond.so0l:472:18: Error: Variable name must be in mixedCase
StakesAlmond.so0l:473:18: Error: Variable name must be in mixedCase
StakesAlmond.so0l:476:20: Error: Variable name must be in mixedCase
StakesAlmond.s0l:490:5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
StakesAlmond.so0l:491:23: Error: Variable name must be in mixedCase
StakesAlmond.so0l:508:40: Error: Avoid to make time-based decisions in
your business logic

StakesAlmond.so0l:518:12: Error: Avoid to make time-based decisions in
your business logic

StakesAlmond.sol:523:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.

StakesAlmond.sol:524:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.

StakesAlmond.so0l:524:40: Error: Avoilid to make time-based decisions in

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

your business logic

StakesAlmond.sol:525:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.

StakesAlmond.sol:553:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.

StakesAlmond.sol:554:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.

StakesAlmond.sol:555:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.

StakesAlmond.so0l:555:40: Error: Avoid to make time-based decisions in
your business logic

StakesAlmond.sol:556:13: Error: Possible reentrancy vulnerabilities.
Avoid state changes after transfer.

StakesAlmond.sol:562:32: Error: Variable name must be in mixedCase
StakesAlmond.sol:576:5: Error: Function name must be in mixedCase
StakesAlmond.sol:576:42: Error: Variable name must be in mixedCase
StakesAlmond.sol:577:9: Error: Variable name must be in mixedCase
StakesAlmond.sol:577:35: Error: Avoid to make time-based decisions in
your business logic

StakesAlmond.so0l:587:9: Error: Variable name must be in mixedCase
StakesAlmond.s0l:590:9: Error: Variable name must be in mixedCase
StakesAlmond.so0l:600:5: Error: Function name must be in mixedCase

ERC721Matcha.sol

ERC721Matcha.sol:63:1: Error: Compiler version 70.5.7 does not
satisfy the r semver requirement

ERC721Matcha.so0l:1159:5: Error: Explicitly mark visibility of state
FERC721Matcha.sol:1258:5: Error: Explicitly mark visibility of state
ERC721Matcha.s0l:1260:20: Error: Variable name must be in mixedCase
ERC721Matcha.sol:1263:5: Error: Explicitly mark visibility of state
ERC721Matcha.so0l:1397:28: Error: Avoid to use ".call.value() ()"
ERC721Matcha.so0l:1397:28: Error: Avoid using low level calls.
ERC721Matcha.so0l1:1401:29: Error: Avoid to use ".call.value() ()"
ERC721Matcha.so0l:1401:29: Error: Avoid using low level calls.
ERC721Matcha.sol:1439:13: Error: Avoid to make time-based decisions
in your business logic

ERC721Matcha.sol:1472:13: Error: Avoid to make time-based decisions
in your business logic

ERC721Matcha.so0l:1528:32: Error: Avoid to use ".call.value() ()"
FERC721Matcha.so0l:1528:32: Error: Avoid using low level calls.
FERC721Matcha.so0l:1539:13: Error: Avoid to make time-based decisions
in your business logic

ERC721Matcha.sol:1566:32: Error: Avoid to use ".call.value() ()"
ERC721Matcha.sol:1566:32: Error: Avoid using low level calls.
ERC721Matcha.sol:1570:33: Error: Avoid to use ".call.value() ()"
ERC721Matcha.sol:1570:33: Error: Avoid using low level calls.

Software analysis result:

These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

{;therAuthority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

